Morphological and molecular characterization of *Haemonchus contortus* and *H. placei* (Nematoda: Trichostrongylidae) from Uzbekistan by sequences of the second internal transcribed spacer of ribosomal DNA

Makhammadi B. Abramatov¹, Oybek O. Amirov¹, Abdurakhim E. Kuchboev¹*, Ilkhom M. Khalilov², Ibrokhim Y. Abdurakhmanov²

1 – Institute of the Gene Pool of Plants and Animals, Uzbek Academy of Sciences, 32-Durmon-yuli Street, 100125 Tashkent, Republic of Uzbekistan.
2 – The Center of Genomics and Bioinformatics under Uzbek Academy of Sciences, Ministry of Agriculture of Uzbekistan, “Uzpakhtasanoat” association.

Correspondence: Tel. +998712891228, Fax +998711206791, E-mail a_kuchboev@rambler.ru

**Abstract.** Nucleotide sequences of the second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA in *H. contortus* and *H. placei* revealed six (2.6%) nucleotide differences between these two species. The level of the intraspecific difference in ITS-2 in *Haemonchus* was low. A number of morphological differences together with distinctive ITS-2 sequences signatures at the molecular level clearly differentiate *H. placei* from *H. contortus* in the genus *Haemonchus*.

**Keywords:** Nematode; Molecular identification; ITS-2; *Haemonchus contortus*; *Haemonchus placei*.

Received 02/06/2013. Accepted 13/09/2013.

**Introduction**

Nematodes of the genus *Haemonchus* Cobbold, 1898 parasitize the abomasum of wild and domestic ruminants and are widespread throughout terrestrial ecosystems. Currently, thirteen *Haemonchus* species have been recorded in the world fauna. The ruminants from the families Cervidae, Antilocapridae, Giraffidae, Bovidae, as well as Camelidae, have been recorded as definitive hosts (Skrjabin et al., 1954; Ivashkin et al., 1989; Anderson, 2000; Hoberg et al., 2004). These nematodes are widespread and cause serious disease (i.e. anemia, loss of appetite, diarrhea, constipation). Losses caused by these diseases to cattle husbandry are significant (Waller and Chandrawathani, 2005).

Until recently, a number of researchers believed that *Haemonchus contortus* (Rudolphi, 1803) parasitize both small and large ruminants (Azimov, 1963; Pryadko, 1962a; 1962b; Pevneva, 1966a; 1966b). However, other scientists (Roberts et al., 1954; Herlich et al., 1958; Daskalov, 1960; 1961; Patyk, 1961;
Lichtenfels et al., 1986; Lichtenfels et al., 1994) believe that two *Haemonchus* species, *H. contortus* and *H. placei*, parasitize these animals. The question of validity of *H. contortus* and *H. placei*, was proved on the basis of detailed morphological and cytological studies.

We find it reasonable to focus attention on this problem and continue the study at the molecular-genetic level. Using molecular genetics methods it is possible to find markers suitable for revealing relations between studied species while describing the structure of the species and dynamics of genetic processes in the populations (Welsh and McClelland, 1990). Studies of genetic variability of nematodes are not only of theoretic, but also of medical-veterinary importance. Of common biological interest are processes of the interrelation of this parasite with the environments, which include not only the complex of natural abiotic factors, but also the organism of the host animal itself.

Our goal was to conduct a morphological study and molecular identification based on ITS-2 spacer of the rDNA of *H. contortus* from sheep and *H. placei* from cattle, obtained from different regions of Uzbekistan, with the purpose of identifying differences between them and obtaining additional data on the rDNA.

**Materials and methods**

**Parasite collection**

Helminthological material from Tashkent, Bukhara, Navoiy, Kashkadarya and Namangan provinces (Uzbekistan) was collected during the dissection of abomasums of sheep and cattle as described by Skrjabin (1928). Nematodes were washed with the physiological solution and the specimens were conserved in 70% ethanol.

Fragments of the second internal transcribed spacer (ITS-2) of rDNA were obtained separately from all males morphologically determined as *H. contortus* from sheep and *H. placei* from cattle. Three male specimens of each of these two species were studied.

**DNA isolation, amplification and sequencing**

A single specimen of each species was used. The isolation of genomic DNA from nematodes was carried out using the method of lysing buffer containing Tris 50mM, EDTA 20 mM and 10 mg/ml of proteinase K. 0.5% of sodium dodecyl sulfate (SDS) was added and incubated in the thermostat for 2 hrs at t 55°C. The isolated DNA was kept at 20°C below zero.

The PCR protocol has been perform using the following protocol. The fragments of ITS 2 of rDNA were amplified using the primers set NCI (forward; 5’-ACGTTCTGTTCAGGGTTGTT-3’ and NC2 (reverse; 5’-TTAGTTTCTTTTCTCCGGT-3’) (Gasser et al., 1993). The PCR was carried out on the thermoeycler (Touchgene Gradient, UK) at the following temperature regime: 92°C – 3 min; 92°C – 15 sec, 55°C – 30 sec, 72°C – 30 sec (35 cycles) and 72°C – 10 min. The reaction was amplified in 50 µl of reaction mixture containing 39 µl ddH2O, 5 µl of 10 x PCR buffer/2 µl 25 mM MgCl2, 1.5 µl of each primer, 1.2 µl of 10 mM dNTP, 1 µl Taq-polymerase and 1 µl of genome DNA. The electrophoresis of amplified DNA fragments was conducted in 1.8 % agarose gel in 1xTAE-buffer and stained in ethidium bromide. The size of the obtained PCR product was identified by comparing it with the fragments of DNA marker Microgel DNA Ladder (Daigger Lab.).

To clone obtained PCR products, we used TOPO TA cloning vector and TOP10 cells *E. coli*. Experiments on cloning and transformation were conducted according to the instruction of the manufacture (Invitrogen, USA). Sequencing was obtained using the Big Dye terminator technology on the equipment of GeneAmp PCR System 9700 with a subsequent capillary electrophoresis ABI 310 Genetic Analyzers (Applied Biosystems, USA).

The analysis of the nucleotide sequences obtained was carried out using the packet of computer software Bioedit, while the alignment and comparison of sequences, using the method of program Clustal W.

Phylogenetic trees were built using the packet of software MEGA (ver. 4.1) using the
bootstrap test of phylogeny method of maximal parsimony. For the phylogenetic analysis we used the species Haemonchus contortus (X78803), H. placei (X78812), H. longistipes (AJ577461) and species Trichostrongylus colubriformis (EF427624) were used as outgroups for tree, published in the base GenBank. Nematodes of Uzbekistan were registered GenBank of accession numbers KC503915 (for H. contortus) and KC503916 (for H. placei).

**Morphological comparisons**

Specimens were examined using high magnification light microscopy. Methods described by Skrjabin et al. (1954) and Ivashkin et al. (1989) were used for the study of the species composition and morphology of Haemonchus nematodes. To identify morphological criteria of mature Haemonchus, we separated the head and tail ends of males and females and made preparations. The collected material was put in flasks, fixed and labeled for storing at the Laboratory of General Parasitology of the Institute of the Pool of Plants and Animals Uzbek Academy of Sciences.

**Results**

Obtained data showed that in the nematodes H. contortus and H. placei the amplified fragments made up 320 pairs of nucleotides. From each specimen of the nematodes H. contortus and H. placei we isolated fragments ITS-2 with the length of 231 base pairs (bp) (figure 1). Obtained data of nucleotide sequences of the ITS-2 from the two studied nucleotide sites of H. contortus and H. placei were identical. The content of GC nucleotides in ITS-2 sequences of the nematodes H. contortus and H. placei was 33 and 33.7%, respectively.

The comparison of the nucleotide sequences of ITS-2 of H. contortus and H. placei revealed differences in six nucleotides. The differences between the two studied nucleotide sites of these nematodes constituted 2.6%. The comparison of differences in the sequences between H. contortus and H. placei revealed three nucleotide positions (figure 1: positions 24, 205 and 219), which are represented by a passage between purines (A+G). In position 123 there differences between pyrimidines. Two replaced nucleotides were recorded in two sites (figure 1: 65 and 196) between purines and pyrimidines, representing the double union. The presence of two variable sites is most likely to be the line differentiating the ITS-2 H. contortus and H. placei.

**Discussion**

The results of our study confirm the previously published data by Stevenson et al. (1995), which revealed differences in the structure of ITS-2 specimens of H. contortus from sheep in England, Switzerland, China and Australia, and specimens from H. placei from cattle from Australia. It is necessary to note that the length of ITS-2 of the objects studied by us coincided with the materials of the authors mentioned above, i.e. our studied resulted in the obtaining of a fragment as long as 231 bp. The study revealed differences in the ITS-2 spacers between H. contortus and H. placei at the level of 1.3% on three nucleotides only between purines. Besides, the work of the authors indicates possible changes in other positions. It is noteworthy that the replacements of bases in positions 123 and 196 in nucleotide sequences in H. contortus when compared with the Australian populations (figure 1).

The level of difference by site ITS-2 within the Haemonchus species is low. So, between H. placei from Uzbekistan and H. placei of bovine animals in Australia (Stevenson et al., 1995), it was 0.43%, while in H. contortus and H. contortus from respective places it reached 8.6%. The reported differences in our opinion, are only intraspecific.

Figure 2 shows the phylogram obtained on the basis of ITS-2 sequences of two Haemonchus varieties and their intraspecific isolates, as well as the closely related genus Trichostrongylus from the Trichostrongylidae family.

In the last few years, methods of molecular taxonomy started to be applied for the study of polymorphism. Genetic descriptions of three species, namely H. longistipes (camel), H. placei (zebra) and H. contortus (sheep and goats) were obtained resulting from the study using RAPD markers.
Figure 1. Comparison of the nucleotide sequences data of ITS-2 region of *Haemonchus contortus* and *H. placei* according by Stevenson et al. (1995) and our original study.

Figure 2. The phylogenetic tree obtained on the basis of sequences of ITS-2 region in two varieties of *Haemonchus* based on our own studies and GenBank data.

These species, according to the materials of our studies, were quite isolated, although *H. contortus* and *H. placei* were more closely related to each other (Jacquet et al., 1995). Stevenson et al. (1995) conducted a comparative study of sites of the second interior transcribing spacer (ITS-2) in *H. contortus* and *H. placei* and revealed only three differences in nucleotide sequences of ITS-2. The authors made a conclusion that these species were independent within the genus *Haemonchus*. To clarify the objectivity of these conclusions we conducted a comparative study of DNA samples of *H. contortus* collected from hosts inhabiting different regions. This comparison, in our view, will enable revealing the level of the intraspecific variability of DNA parts and provide an opportunity to increase the effectiveness of application of molecular
methods for the identification of taxonomy of parasitic nematodes.

Some scientists conducted studies of the mitochondrial DNA of nematodes. So, a low genetic diversity and presence of isolating inter-population barriers in nematodes, parasites of animals, were recorded while studying polymorphism in individual parts of the mitochondrial DNA. A high level of variability was recorded in nematodes parasitizing the intestine of sheep and cattle (Blouin et al., 1995).

The recorded level of polymorphism variation in adults *H. contortus* and *H. placei* is probably the result of the effect of different evolutionary factors affecting the structure of this parasite population at different stages of its ontogeny and host population (Morozova et al., 2002). Of these, the most important factors should be the selection of respective definitive hosts.

The analysis of conducted studies showed that the *Haemonchus* isolated from sheep is different morphologically from those of cattle. Thus, the study revealed morphological differences in the spicules of *H. contortus* and *H. placei*. In *H. contortus* the length of the left spicule reached 509.9±7.95 µm, while that of the right spicule was 511.5±7.91 µm. Each spicule had a sharp spike situated at varying distances from the distal end: 53±0.72 µm and 22.2±0.47 µm in the right and left spicules, respectively. In *H. placei*, the length of the left spicule was 539.7±6.56 µm, while that of the right spicule, 540.2±6.42 µm. The spine is situated at a varying length from the distal end: 58.94±0.91 and 29.67±0.74 µm in the right and left spicules, respectively.

Besides, spicules in the concave in *H. placei* were curved to the right, while the left spicule was convex from the hook to the end. In *H. contortus* spicules had straight distal ends.

We think that in *H. placei* the spicules were curved slightly to the right and the exterior edge from the hook to the end of the left spicule was convex, whereas in *H. contortus* the spicules were straight and the exterior side from the hook to the end of the left spicule was concave. Regarding the females, in *H. placei* most of these have a ligulate-form valve and females are registered to have a semi-spherical protuberance at the side of the vulva, while in *H. contortus* females with the semi-spherical protuberance prevail; besides, other types of females as in *H. placei* are encountered. Besides, revealed some differences in the morphology of females. In *H. placei* females ovijectors are longer compared to those of *H. contortus* females – 540±7.63 µm (=the reservoir of the ovijector with sphincters); the vulva and anus lie farther from the body end. It should be noted that concerning the change in the morphology of exterior female sex organs, the lobes are not a reliable index for identification of the haemonchus varieties.

Thus, we for the first time obtained data on the DNA structure of *Haemonchus* nematodes collected from Uzbekistan. The comparative analysis of ITS-2 fragments, using the ribosomal DNA between *H. contortus* and *H. placei* enabled the recording 2.6% of interspecific differences.

The number of morphological criteria and clear distinctions in the PCR pattern indicate the independence of the species *H. placei* within the genus *Haemonchus*.

Acknowledgements

We are indebted to academician, professor Djaloliddin Azimov and Dr Vladimir Golovanov (both in Uzbekistan) for helpful comments on earlier version of the manuscript. We also thank junior researcher Rokhatoy Karimova for assistance in the field studies and technical assistance to the staff of the Laboratories General Parasitology and Molecular biology and Biotechnology of the Institute of the Gene Pool of Plants and Animals Uzbek Academy of Sciences.

References


Azimov D.A. 1963. The helminthes of sheep in the south of Uzbekistan and dynamics of most important helminthiases: Dissertation of the Candidate of Veterinary, Moscow, USSR. 155 pp.


Skrjabin K.I. 1928. The method of complete helminthological dissection of vertebrates, including humans. Moscow, Moscow State University, p. 45.


